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Abstract

This paper provides a theoretical study of the detection of an object immersed in
a fluid when the fluid motion is governed by the stationary Navier-Stokes equations
with non homogeneous Dirichlet boundary conditions. To solve this inverse problem,
we make a boundary measurement on a part of the exterior boundary. First, we
present an identifiability result. We then use a shape optimization method: in order
to identify the obstacle, we minimize a nonlinear least squares criterion. Thus, we
prove the existence of the first order shape derivative of the state, we characterize it
and deduce the gradient of the least squares functional. Finally, we study the stability
of this setting doing a shape sensitivity analysis of order two. Hence, we prove the
existence of the second order shape derivatives and we give the expression of the shape
Hessian at possible solutions of the original inverse problem. Then, the compactness of
the Riesz operator corresponding to this shape Hessian is shown and the ill-posedness
of the identification problem follows. This explains the need of regularization to solve
numerically this problem.

Keywords: stationary Navier-Stokes equations, order two shape sensitivity, geometric
inverse problem, sensitivity with respect to the domain, shape calculus.
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1 Introduction and notations

Motivations. Inverse problems are a source of many investigations, from both a mathe-
matical and industrial perspective. One of the topics studied in this domain is the detection
of an obstacle immersed in a fluid. A concrete application is the detection of shoals of fish,
gas bubbles in a fluid (during mould fillings for example) or water bubbles in oil in a pipe
for example.

A method to solve these inverse problems, particularly in the case of fluid mechanics,
is the shape optimization method. The first step to solve such a problem is to prove the
existence of the shape derivatives. In 1991, Simon does it rigorously in the case of a Stokes
flow in [24] and the Navier-Stokes case is treated by Bello et al. in 1992 in [7] and [8].
Then, in 2005, Alvarez et al. study in [3] the following inverse problem: an inaccessible
rigid body ω is immersed in a viscous fluid, in such a way that ω plays the role of an
obstacle around which the fluid is flowing in a greater bounded domain Ω. They wish to
determine ω (i.e. its shape and location) via boundary measurement on the boundary ∂Ω.
Under reasonable smoothness assumptions on Ω and ω, they prove that one can identify ω
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via the measurement of both the velocity of the fluid and the Cauchy forces on some part
of the boundary ∂Ω. They also give a directional stability result for the inverse problem
(see [3, Theorem 1.3]). The calculus of shape derivative concerning the steady-state Navier-
Stokes equations is treated for an optimal shape problem in 2008 by Henrot et al. in [20]
and [21]. In 2008, Conca et al. investigate in [10] the problem of the detection of a moving
obstacle in a perfect fluid by a boundary measurement. They show that, when the obstacle
is a ball, one may identify the position and the velocity of its center of mass from a single
boundary measurement. In 2010, using complex analysis, Conca et al. prove in [11] that
this result can not be generalized to any solid. However, they extend it to moving ellipses
and they prove that when the solid enjoys some symmetry properties, it can be partially
detected. In 2011, Badra et al. prove in [6] the instability of the detection of an object
immersed in a fluid in the Stokes case with Dirichlet or Neumann boundary conditions.

Numerical resolution of inverse problems often leads to difficulties. This paper explains
why one has to expect numerical difficulties to detect and reconstruct an obstacle immersed
in a fluid when the fluid motion is governed by the stationary Navier-Stokes equations.
Indeed, we focus on the question of stability of a shape optimization problem used to
solve this inverse problem. The aim of this paper is to adapt the results presented in the
Stokes case by Badra et al. in [6] to the nonlinear Navier-Stokes case. We here deal with
non homogeneous Dirichlet boundary conditions. The method that we adopt to solve this
inverse problem is to make a boundary measurement on a part of the exterior boundary.
Following previous works on electrical impedance tomography (by Eppler et al. in [14]
and Afraites et al. in [1], [2]) or on the same topic in the Stokes case (by Badra et al.
in [6]), our strategy is then to minimize a least squares functional. We then prove the
existence of the first and second order shape derivatives and characterize the gradient of
this functional. Here, we give a general mathematical framework to prove the existence of
the shape derivatives in this kind of problem using weighted spaces. It permits to prove an
intuitive idea: the regularity of the exterior boundary does not have importance. In order
to study the stability, we compute the shape Hessian at a critical point. We then prove
that the Riesz operator corresponding to this shape Hessian is compact, which means that
the functional is degenerate for the high frequencies.

This paper is organized as follows. We first introduce the general notation that we
adopt. In Section 2 we recall some preliminary results whose the arguments used in this
work strongly depend: existence and uniqueness theorems and local regularity results. The
problem setting is exposed in Section 3 where we introduce the needed functional tools.
Section 4 is devoted to the identifiability result. The discussion of the first order shape
derivatives is made in Section 5. We prove the existence of the first order shape derivatives,
we characterize them and, introducing an adjoint problem, we compute the gradient of the
least squares functional. Moreover, we prove the existence of the local first variation of the
solution of the adjoint problem which is a linearized Navier-Stokes equations. The material
related to the higher order shape derivatives is combined in Section 6. We present the
existence of higher order shape derivatives and characterize the shape Hessian at possible
solutions of the original inverse problem. The last section 7 justfies the ill-posedness of the
problem. We state that the shape Hessien has a pathological behavior: the Riesz operator
corresponding to this shape Hessian is compact.

General notation. Let us introduce the notations that we adopt in this paper. We
denote by Lp, Wm,p and Hs the usual Lebesgue and Sobolev spaces. For k ∈ N and an open
set Ω ⊂ RN (N = 2 or 3), the space Ckc (Ω) is defined as the set of compactly supported
functions in Ω having continuous derivatives up to order k and ‖ · ‖k,∞ is its natural

2



norm. For u ∈ Ckc (Ω), supp(u) denotes the support of u. We also denote by D(Ω) the
space of C∞ functions compactly supported in Ω. We note in bold the vectorial functions
and spaces: Lp, Wm,p, Hs, etc. Moreover we note respectively 〈·, ·〉Ω and 〈·, ·〉∂Ω the
duality product between H−1(Ω) and H1

0(Ω) and the duality product between H−1/2(∂Ω)
and H1/2(∂Ω). We denote by |Ω| the measure of Ω. Moreover, n represents the external
unit normal to ∂Ω, and for a smooth enough function u, we note ∂nu the normal derivative
of u. We also denote byMN,N the space of matrices of size N ×N . Moreover, bΩ(·, ·, ·) is
the trilinear continuous form on H1(Ω)×H1(Ω)×H1(Ω) defined by

bΩ(u,v,w) =
N∑

i,j=1

∫
Ω
ui
∂vj
∂xi

wj .

The subscript of b is used to indicate the domain of integration if there are ambiguities.
Finally, for k ≥ −1 and m ≥ 0 integers with k < m and for two open subsets Ω1 and Ω2

such that Ω2 ⊂ Ω1, we note Xk,m(Ω1,Ω2) the space of functions in Hk(Ω1) such that their
restriction to Ω2 belongs to Hm(Ω2). This space endowed with the norm

‖u‖Xk,m(Ω1,Ω2) :=
(
‖u‖2Hk(Ω1) + ‖u‖2Hm(Ω2)

)1/2
,

is hilbertian.

2 Remainder of some preliminary useful results

2.1 Some results on the Navier-Stokes problem

For Ω an open subset of RN (N = 2, 3), we define

L2
0(Ω) :=

{
q ∈ L2(Ω) ;

∫
Ω
q = 0

}
.

We first recall a classical existence theorem which can be found in [17, Theorem IV.2.3].
We also refer to [25], [16] or [12] for classical results concerning the Navier-Stokes equations
and to [5] for the Lp theory.

Theorem 2.1 (Existence of a solution. Girault, Raviart, [17]). Let N = 2, 3, Ω be a
bounded connected Lipschitz open set of RN , Γi, i = 1, ..., I, the connected components
of ∂Ω and ν > 0. Let f ∈ H−1(Ω) and g ∈ H1/2(∂Ω) satisfy the condition∫

Γi

g · n = 0 ∀i = 1, ..., I. (2.1)

Then, the Navier-Stokes problem
−ν∆u+ (u · ∇)u+∇p = f in Ω

divu = 0 in Ω
u = g on ∂Ω,

(2.2)

admits at least a solution (u, p) ∈ H1(Ω)× L2
0(Ω).

In order to prove a regularity result, we first recall a classical corollary of the Sobolev
imbeddings and we deduce a practical result.
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Theorem 2.2. Assume that Ω is a bounded Lipschitz open subset of RN . Let s1, s2 ∈ R+

and s ∈ [−1,+∞[ such that s1 ≥ s, s2 ≥ s and either

s1 + s2 − s ≥
N

2
, si − s > 0 i = 1, 2

or

s1 + s2 − s >
N

2
, si − s ≥ 0 i = 1, 2.

Then (u, v) 7→ u · v is a continuous bilinear map from Hs1(Ω)×Hs2(Ω) into Hs(Ω).

Proof. The usual result is given for m1 = s1, m2 = s2 and m = s + 1 integers (see [17,
Corollary I.1.1]) but we deduce this result with an interpolation argument (see for example
[9, Theorem 6.4.5]).

It leads to the following result:

Corollary 2.3. Let Ω be a bounded Lipschitz open subset of RN (N = 1, 2, 3) and s ∈ R+.
The mapping

(u, v) ∈ H1+s(Ω)×Hs(Ω) 7→ u · v ∈ Hs−1/2(Ω)

is bilinear continuous. In particular, the mapping

u ∈ H1+s 7→ (u · ∇)u ∈ Hs−1/2(Ω)

is continuous.

Corollary 2.4 (Regularity of the solution). Let Ω be a bounded connected open set of RN
(N = 2, 3) with a Ck,1 boundary (k ∈ N) and ν > 0. Let f ∈ Hk−1(Ω) and g ∈ Hk+1/2(∂Ω)
satisfying the condition (2.1). Then Problem (2.2) admits a solution (u, p) which belongs
in Hk+1(Ω)×

(
Hk(Ω) ∩ L2

0(Ω)
)
.

Proof. We will use the regularity of the solutions of the Stokes equations and proceed by
induction. We know using Theorem 2.1 that the result is true for k = 0.

Let us assume that the result is true for some k ∈ N. Then u ∈ Hk+1(Ω) and we have
−ν∆u+∇p = f − (u · ∇)u in Ω

divu = 0 in Ω
u = g on ∂Ω.

Let us prove that (u ·∇)u ∈ Hk(Ω). Since u ∈ Hk+1(Ω), then, according to Corollary 2.3,
(u · ∇)u ∈ Hk−1/2(Ω). Therefore, using the regularity of the solutions of the Stokes
equations (see for example [4, Theorem 4.8]), u ∈ Hk+3/2(Ω). The same argument gives
(u · ∇)u ∈ Hk(Ω) and (u, p) ∈ Hk+2(Ω)×Hk+1(Ω) which concludes the proof.

Let us recall a uniqueness result (see [16, Theorem VIII.2.1]):

Theorem 2.5 (Unicity of the solution. Galdi, [16]). Let us consider Problem (2.2). If
ν > cb(Ω)‖∇u‖L2(Ω) where

cb(Ω) :=


|Ω|1/2

2
if N = 2

2
√

2|Ω|1/6

3
if N = 3,

(2.3)

then the solution given by Corollary 2.4 is unique.
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Let us prove the following local regularity result:

Theorem 2.6 (Local regularity for the Navier-Stokes equations). Let k ∈ N∗, ν > 0, Ω be
a bounded connected Lipschitz open set of RN (N = 2, 3) and ω ⊂⊂ Ω be an open set with
a Ck,1 boundary such that Ω\ω is connected. Let C and C′ be two smooth open subsets of
Ω\ω such that ∂ω ⊂ ∂C, ∂ω ⊂ ∂C′, C\∂ω ⊂ C′ and C′ ⊂ Ω. Let

(f ,hext,hint) ∈ X−1,k−1(Ω\ω, C′)×H1/2(∂Ω)×Hk+1/2(∂ω),

such that ∫
∂Ω
hext · n +

∫
∂ω
hint · n = 0.

Then every solution (u, p) ∈ H1(Ω\ω)× L2
0(Ω\ω) of the Navier-Stokes problem

−ν∆u+ (u · ∇)u+∇p = f in Ω\ω
divu = 0 in Ω\ω

u = hext on ∂Ω
u = hint on ∂ω

belongs to Hk+1(C)×Hk(C).

Proof. We will use the local regularity of the solutions of the Stokes equations (see for
example [16, Theorem IV.5.1]).

First let us consider the case k = 1. We then proceed by induction for k > 1. We have
−ν∆u+∇p = f − (u · ∇)u in Ω

divu = 0 in Ω
u = g on ∂Ω.

Let us prove that (u · ∇)u ∈ X−1,0(Ω\ω, C′). Since u ∈ H1(Ω\ω), then, according to
Corollary 2.3, (u ·∇)u ∈ H−1/2(Ω\ω). Therefore, using the local regularity of the solutions
of the Stokes equations, u ∈ X1,3/2(Ω\ω,V), where V is a smooth open subset of Ω\ω
such that C ⊂⊂ V ⊂⊂ C′. Therefore u ∈ X1,3/2(Ω\ω,V). The same argument gives
(u · ∇)u ∈ X−1/2,0(Ω\ω,V) and (u, p) ∈ X1,2(Ω\ω, C)×X0,1(Ω\ω, C).

2.2 Some results on the linearized Navier-Stokes problem

Theorem 2.7 (Existence and uniqueness of the solution of the linearized Navier-Stokes
equations). Let Ω be a bounded connected Lipschitz open set of RN (N = 2, 3). Let us
consider f ∈ H−1(Ω), g ∈ L2(Ω) and h ∈ H1/2(∂Ω) such that∫

Ω
g =

∫
∂Ω
h · n.

Let v ∈ H1(Ω) such that ν > cb(Ω)‖v‖H1(Ω), where cb(Ω) is defined by (2.3). Then the
problem 

−ν∆u+ (u · ∇)v + (v · ∇)u+∇p = f in Ω
divu = g in Ω

u = h on ∂Ω,
(2.4)

admits a unique solution (u, p) ∈ H1(Ω) × L2
0(Ω) and there exists a constant C (which

depends on N , Ω, ν, and v) such that

‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖g‖L2(Ω) + ‖h‖H1/2(∂Ω)

)
. (2.5)
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Proof. Using a lifting argument (see [4, Lemma 3.3]), existence and uniqueness of the solu-
tion of problem (2.4) reduce to existence and uniqueness of the solution of the homogeneous
problem. We then use Lax-Milgram’s Theorem and finally De Rham’s Theorem (see for
example [4, Lemma 2.7]) to obtain the corresponding pressure p.

Theorem 2.8 (Local regularity for the linearized Navier-Stokes equations). Let k ∈ N∗,
ν > 0, Ω be a bounded connected Lipschitz open set of RN (N = 2, 3) and ω ⊂⊂ Ω be an
open set with a Ck,1 boundary such that Ω\ω is connected. Let C and C′ be two smooth
open subsets of Ω\ω such that ∂ω ⊂ ∂C, ∂ω ⊂ ∂C′, C\∂ω ⊂ C′ and C′ ⊂ Ω. Let

(f , g,hext,hint) ∈ X−1,k−1(Ω\ω, C′)×X0,k(Ω\ω, C′)×H1/2(∂Ω)×Hk+1/2(∂ω),

such that ∫
Ω\ω

g =

∫
∂Ω
hext · n +

∫
∂ω
hint · n.

Let v ∈ H1(Ω\ω) such that v C′ ∈ Hk+1(C′). Every solution (u, p) ∈ H1(Ω\ω)× L2
0(Ω\ω)

of the linearized Navier-Stokes problem
−ν∆u+ (v · ∇)u+ (u · ∇)v +∇p = f in Ω\ω

divu = g in Ω\ω
u = hext on ∂Ω
u = hint on ∂ω

(2.6)

belongs to Hk+1(C) × Hk(C). Moreover, if ν > cb(Ω\ω)‖v‖H1(Ω\ω) (where cb(Ω\ω) is
defined analogously to (2.3)), then the solution is unique and there exists a constant C
(which depends on N , Ω, ν, and v) such that

‖u‖Hk+1(C) + ‖p‖Hk(C) ≤ C
(
‖f‖X−1,k−1(Ω\ω,C′) + ‖g‖X0,k(Ω\ω,C′)

+ ‖hint‖Hk+1/2(∂ω) + ‖hext‖H1/2(∂Ω)

)
.

Proof. The proof of the regularity is similar to the proof of Theorem 2.6. Moreover, if
ν > cb(Ω\ω)‖v‖H1(Ω\ω), then according to Theorem 2.7, the solution is unique and we have
the estimate (2.5). Thus using the local estimate on the solution of the Stokes equations
(see for example [6, Appendix A.2]), we obtain by induction the announced estimate.

Remark 2.9. Theorems 2.7 and 2.8 are also true replacing the first equation of the sys-
tems (2.4) and (2.6) (i.e. −ν∆u+ (v · ∇)u+ (u · ∇)v +∇p = f) by

−ν∆u+ t∇v u−∇uv +∇p = f .

Remark 2.10. Concerning Theorem 2.8, we can prove the following sharper estimate

‖ϕu‖Hk+1(C′) + ‖ϕp‖Hk(C′)

≤ C
(
‖f‖X−1,k−1(Ω\ω,C′) + ‖hint‖Hk+1/2(∂ω) + ‖hext‖H1/2(∂Ω)

)
(2.7)

where ϕ ∈ C∞c (Ω) is a truncation function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in C ∪ ω and ϕ ≡ 0
in Ω\(C′ ∪ ω). The proof relies on the fact that (ϕu, ϕp) solves

−ν∆(ϕu) +∇(ϕp) = f̃ in C′
div (ϕu) = ϕg + u · ∇ϕ in C′

ϕu = 0 on ∂V ′
ϕu = hint on ∂ω,
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where f̃ := ϕf − νu∆ϕ− 2ν∇u∇ϕ+ p∇ϕ+ (u⊗∇ϕ)v − (ϕu · ∇)v − (v · ∇)ϕu (see for
instance [16, Theorem IV.5.1] or [6, Appendix A.2]).

3 The problem setting

Let Ω be a bounded connected Lipschitz open subset of RN (with N = 2 or N = 3). We
denote by {Γi}i=1,...,I the connected components of ∂Ω. Let δ > 0 fixed (small). We define

Oδ :=
{
ω ⊂⊂ Ω with a C1,1 boundary such that d(x, ∂Ω) > δ ∀x ∈ ω

and such that Ω\ω is connected
}
.

Moreover, since we will work using the local regularity of the solutions (see the proof of the
differentiability result 5.2 for example), we also need to define Ωδ an open set with a C∞

boundary such that

{x ∈ Ω ; d(x, ∂Ω) > δ/2} ⊂ Ωδ ⊂ {x ∈ Ω ; d(x, ∂Ω) > δ/3} .

Then, in order to make a shape sensitivity analysis, we define

U := {θ ∈W2,∞(RN ); supp(θ) ⊂ Ωδ} and U :=

{
θ ∈ U ; ‖θ‖2,∞ < min

(
δ

3
, 1

)}
as the space of admissible deformations. These space permit to perturb only the object ω
and not the fixed domain Ω. Notice that if θ ∈ U , then (I + θ) is a diffeomorphism. For
such a θ ∈ U and ω ∈ Oδ, we check that Ω = (I + θ)(Ω) and we define the perturbed
domain ωθ := (I + θ)(ω) which is so that ωθ ∈ Oδ.

Let O be a non-empty open subset of ∂Ω. We assume that there exists an open subset
Õ ⊂ ∂Ω of class C1,1 such that O ⊂⊂ Õ. Let fb ∈ H1/2(O) be an admissible boundary
measurement and g ∈ H1/2(∂Ω), g 6= 0 such that g

Õ
∈ H3/2(Õ) and∫

Γi

g · n = 0, ∀i = 1, ..., I. (3.1)

The introduction of Õ and the regularity of g
Õ

are needed to defined properly the func-
tional J below. This is also necessary to defined properly the adjoint problem (5.7) below
(see Remark 5.8).

Let us consider, for ω ∈ Oδ, the following overdetermined Navier-Stokes boundary
values problem: 

−ν∆u+ (u · ∇)u+∇p = 0 in Ω\ω
divu = 0 in Ω\ω

u = g on ∂Ω
u = 0 on ∂ω

ν∂nu− pn = fb on O,

(3.2)

with ν > 0 a given constant representing the kinematic viscosity of the liquid.
We suppose here that there exists ω∗ ∈ Oδ such that (3.2) has a solution. This means

that the measurement fb is perfect, that is to say without error. Thus, we consider the
following geometric inverse problem:

find ω ∈ Oδ and a pair (u, p) which satisfy the overdetermined system (3.2). (3.3)
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To solve this inverse problem, we consider, for ω ∈ Oδ, the least squares functional

J(ω) :=

∫
O
m2| (ν∂nu(ω)− p(ω)n)− fb|2, (3.4)

where the function m ∈ C∞c (∂Ω) is such that supp(m) = O and where the couple
(u(ω), p(ω)) ∈ H1(Ω\ω)× L2(Ω\ω) is a solution of the Navier-Stokes problem

−ν∆u+ (u · ∇)u+∇p = 0 in Ω\ω
divu = 0 in Ω\ω

u = g on ∂Ω
u = 0 on ∂ω.

(3.5)

Remark 3.1. Notice that using a local regularity result similar to Theorem 2.6, we check
that (ν∂nu− pn) O ∈ H1/2(O) (because (u, p) belongs to H2×H1 in a neighborhood of O,
since Õ is C1,1). Hence, the functional J defined by (3.4) is well defined.

Notice that the existence of a solution of problem (3.5) is guaranteed by Theorem 2.1
since we imposed the compatibility condition (3.1). Note also that the solution is not nec-
essarily unique and then the functional J may be multivalued. To overcome this difficulty,
we assume ν big enough and independent of the object ω ∈ Oδ (see Theorem 2.5) in order
to guarantee the uniqueness of the solution of the previous problem (once a normalization
condition on the pressure p is imposed): J is then single valued. More precisely, we assume
that

ν > cb(Ω)

(
2‖∆G‖W ′ +

2

ν
‖(G · ∇)G‖W ′ + 2‖G‖H1(Ω\Ωδ)

)
(3.6)

where W ′ is the dual space of

W :=
{
ϕ ∈ H1(Ω\Ωδ), divϕ = 0 in Ω\Ωδ and ϕ = 0 on ∂Ω

}
,

where, according to [4, Lemma 3.3], G ∈ H1(Ω) satisfies

G = g on ∂Ω, divG = 0 in Ω and G = 0 in Ωδ, (3.7)

and where

cb(Ω) :=


|Ω|1/2

2
if N = 2

2
√

2 |Ω|1/6

3
if N = 3,

(3.8)

(see [16, Vol. 2, Chap. VIII, page 6]). Moreover, we choose the normalization:∫
O
m2(ν∂nu− pn) · n =

∫
O
m2fb · n. (3.9)

Hence, according to Theorem 2.5, this solution (u, p) is unique and is referred as the state
in the rest of the paper. Notice that the terms in (3.9) have a sense using Remark 3.1.

Remark 3.2. The estimate (3.6) implies that

ν > cb(Ω\ω)‖u‖H1(Ω\ω), (3.10)

where cb(Ω\ω) is defined analogously to (3.8). Indeed, if ν ≥ 2cb(Ω) ‖G‖H1(Ω\Ωδ), we
know that ‖u−G‖H1(Ω) ≤

2
ν ‖ν∆G− (G · ∇)G‖W ′ (see [25, Ch. II, eq. (1.89)]) and we

have obviously cb(Ω) ≥ cb(Ω\ω). Moreover, Inequality (3.6) implies the uniqueness of the
solution of all the perturbed problems we will consider in this paper.
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Then, we try to minimize the least squares criterion J :

ω∗ = argmin
ω∈Oδ

J(ω). (3.11)

Indeed, if ω∗ solves the inverse problem (3.3), then J(ω∗) = 0 and (3.11) holds. Conversely,
if ω∗ solves the optimization problem (3.11) with J(ω∗) = 0, then it is a solution of (3.3).

The needed functional tools. Let T > 0, that we will have to fix small. We use the
shape calculus introduced by Murat and Simon in [23]. Thus, we consider the function

φ : t ∈ [0, T ) 7→ I + tV ∈W2,∞(RN ), (3.12)

where V ∈ U . Note that for small t, φ(t) is a diffeomorphism of RN and that φ′(0) = V
vanishes on ∂Ω and even on the tubular neighborhood Ω\Ωδ of ∂Ω. For t ∈ [0, T ), we
define ωt := φ(t)(ω) where φ is defined by (3.12). For the rest of the paper, we use a
subscript "t" to indicate that the quantity is defined on the time t dependent domain. For
instance, nt is the external unit normal of Ω\ωt.

Remark 3.3 (A remark on the nonsingular solutions of the Navier-Stokes problem). All
the results are still valid for a nonsingular solution (u, p) of the Navier-Stokes Problem (3.5)
(see [17, Ch.IV, §3] for details on this notion). However, without the uniqueness of the
solution, the functional J may be multivalued. We then differentiate the functional J for a
given nonsingular solution.

We can also notice that, even if we do not assume the uniqueness of the solution of the
Navier-Stokes Problem (3.5), the solution of the overdetermined Problem (3.2) is unique.
Indeed, let us assume that (uj , pj), j = 0, 1, are two solutions of problem (3.2) correspond-
ing to ω = ωj. We know using the identifiability Theorem 4.1 that the overdetermination
permits to identify the domain ω. Then, using the unique continuation property (see Corol-
lary 4.3 below), we check, like what is done in the proof of the identifiability Theorem 4.1
in Section 4, that u := u0 − u1 = 0 and p := p0 − p1 = 0 in Ω\ω. In conclusion, the
overdetermination of Problem (3.2) permits to identify the obstacle ω and to select, in the
non-uniqueness case, a unique solution.

4 Identifiability result

We first state an identifiability result similar to Theorem 1.2 proved in [3] by Alvarez et al.:
it states that given a fixed g, two different geometries ω0 and ω1 in Oδ yield two different
measures fb1 and fb2. Hence problem (3.3) admits a unique solution. We also refer to [13,
Theorem 1.2] proved by Doubova et al.

Theorem 4.1 (Identifiability result). Let Ω ⊆ RN , N = 2 or N = 3, be a bounded
Lipschitz domain, and O be a non-empty open subset of ∂Ω of class C1,1. Let

ω0, ω1 ∈ {ω ⊂⊂ Ω; ω is a Lipschitz open set and Ω\ω is connected}

and g ∈ H1/2(∂Ω) with g 6= 0 and g O ∈ H3/2(O), satisfying the flux condition (3.1). Let
(uj , pj) for j = 0, 1, be a solution of

−ν∆uj + (uj · ∇)uj +∇pj = 0 in Ω\ωj
divuj = 0 in Ω\ωj

uj = g on ∂Ω
uj = 0 on ∂ωj .
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Assume that (uj , pj) are such that

−ν∂nu0 + p0 n = −ν∂nu1 + p1 n on O.

Then ω0 ≡ ω1.

The proof is adapted from [3, Theorem 1.2]. The main ingredient is the following
theorem (see [3, Theorem 2.3]) which is a direct adaptation of the unique continuation
property stated in [15]:

Theorem 4.2 (Alvarez et al. in [3]; Fabre, Lebeau in [15]). Let Ω0 ⊂ RN , N ≥ 2,
be a connected open set and let D0 a non-empty open subset of Ω0. If a ∈ L∞loc(Ω0),
c ∈ Lrloc(Ω0,MN,N ), with r > N , and (u, p) ∈ H1

loc(Ω0)× L2
loc(Ω0) is a solution of{

−∆u+ (a · ∇)u+ cu+∇p = 0 in Ω0

divu = 0 in Ω0,

with u = 0 in D0, then u = 0 in Ω0 and p is constant in Ω0.

We deduce from the above theorem the following corollary:

Corollary 4.3 (Unique continuation property). Let Ω0 ⊆ RN , N ≥ 2, be a connected
open set and O ⊂ ∂Ω0 be a non-empty Lipschitz relatively open subset. Let us assume that
(u, p) ∈ H1(Ω0)× L2(Ω0) is a solution of

−ν∆u+ (u · ∇)v1 + (v0 · ∇)u+∇p = 0 in Ω0

divu = 0 in Ω0

u = 0 on O
−ν∂nu+ pn = 0 on O,

where v0 ∈ L∞loc(Ω0) and ∇v1 ∈ Lrloc(Ω0,MN,N ), with r > N . Assume also that there
exists a neighborhood V of O in Ω such that v0 ∈ L∞(V) and ∇v1 ∈ Lr(V,MN,N ). Then
u = 0 and p = 0 in Ω0.

Proof of Corollary 4.3. The idea of the proof is to enlarge the domain Ω0 at a part of O
and to use the unique continuation Theorem 4.2 in this enlarged domain. We choose y ∈ O

and a radius ρ ≤ d(y, ∂O)

2
(or ρ ≤ |∂Ω|

2
if O = ∂Ω) such that (B(y, ρ) ∩ Ω0) ⊂ V and such

that Ω0 ∩B(y, ρ) and B(y, ρ)\Ω0 are Lipschitz (where B(y, ρ) is the ball with center y and
radius ρ). We then set Ωρ := Ω0 ∪ B(y, ρ) and we define

ũ =

{
u in Ω0

0 in Ωρ\Ω0
and p̃ =

{
p in Ω0

0 in Ωρ\Ω0,

ṽ0 =

{
v0 in Ω0

0 in Ωρ\Ω0
and ∇̃v1 =

{
∇v1 in Ω0

0 in Ωρ\Ω0.

Since u ∈ H1(Ω0) and u = 0 on O, we check that ũ ∈ H1(Ωρ). Moreover, p̃ ∈ L2(Ωρ),
ṽ0 ∈ L∞loc(Ωρ) and ∇̃v1 ∈ Lrloc(Ωρ). By summing on Ω0 ∩ B(y, ρ) and on Ωext

ρ := Ωρ\Ω0

and using the fact that −ν∂nu+ pn = 0 on O, we get that for all ϕ in D(B(y, ρ))∫
B(y,ρ)

(ν∇ũ :∇ϕ− p̃ divϕ) + bB(y,ρ)(ũ, ṽ1,ϕ) + bB(y,ρ)(ṽ0, ũ,ϕ) = 0.

Then, −ν∆ũ + (ũ · ∇)ṽ1 + (ṽ0 · ∇)ũ + ∇p̃ = 0 in D′(B(y, ρ)) and then in D′(Ωρ).
Proceeding as above, we also get div ũ = 0 in D′(Ωρ). Moreover, ũ = 0 in Ωext

ρ ⊂ Ωρ.
Thus, according to the unique continuation Theorem 4.2, ũ = 0 and p̃ is constant in Ωρ.
Since p̃ = 0 in Ωext

ρ , p̃ = 0 in Ωρ and then p = 0 in Ω0 by restriction.
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The proof of Theorem 4.1 is split into two steps. Firstly, we use the unique continuation
Corollary 4.3 to prove that u0 = u1 and p0 = p1 in Ω\ω where ω is the smallest simply
connected open set such that (ω0 ∪ ω1) ⊂ ω. Secondly, we proceed by contradiction: we
assume ω0 6= ω1 and we use the unique continuation Theorem 4.2 to prove that u1 = 0
(respectively u0 = 0) on ∂Ω which contradicts the fact that u1 = g 6= 0 (respectively
u0 = g 6= 0) on ∂Ω.

Proof of Theorem 4.1. We define u := u0−u1, p := p0−p1 and let ω be the smallest simply
connected open set such that (ω0 ∪ ω1) ⊂ ω (see Figure 1). Notice that, in the particular

ΩO

ω1 ω1

ω0ω

Figure 1: The set ω

case where ω0∪ω1 is simply connected, ω is exactly ω0∪ω1. Hence, the pair (u, p) satisfies
−ν∆u+ (u · ∇)u0 + (u1 · ∇)u+∇p = 0 in Ω\ω

divu = 0 in Ω\ω
u = 0 on O

−ν∂nu+ pn = 0 on O.

In order to use the previous Corollary 4.3, we have to check that

u1 ∈ L∞loc(Ω\ω) ∩ L∞(V), ∇u0 ∈ Lrloc(Ω\ω,MN,N ) ∩ Lr(V), with r > N,

where V is a neighborhood of O in Ω\ω. This comes from a local regularity result similar
to Theorem 2.8: since O is C1,1 and g O ∈ H3/2(O), we have, choosing a positive radius
ρ < d(y, ∂O)/2 with y ∈ O (or ρ < |∂Ω| /2 if O = ∂Ω) in such a way that B(y, ρ) ∩ ω = ∅
and B(y, ρ) ∩ ((Ω\ω)c) is simply connected,

u1 ∈ H2((Ω\ω) ∩ B(y, ρ)) ↪→ L∞((Ω\ω) ∩ B(y, ρ))

and
∇u0 ∈ H1((Ω\ω) ∩ B(y, ρ),MN,N ) ↪→ L6((Ω\ω) ∩ B(y, ρ),MN,N ).

Similarly, we prove that u1 ∈ L∞loc(Ω\ω) and ∇u0 ∈ Lrloc(Ω\ω,MN,N ). Therefore, accord-
ing to Corollary 4.3, u = 0 and p = 0 in Ω\ω.

We then proceed by contradiction assuming that ω0\ω1 is non-empty. In the sequel, we
assume that ω\ω1 is connected. If not, it suffices to replace ω\ω1 by one of its connected
components in the following proof. We know that

− ν∆u1 + (u1 · ∇)u1 +∇p1 = 0 in ω\ω1. (4.1)

In order to give a clear idea of the proof, let us first consider the particular case where
ω = ω0 ∪ ω1.

11



Case where ω = ω0 ∪ ω1. Assume for the moment that ω0\ω1 is Lipschitz. Then,
multiplying Equation (4.1) by u1 and integrating by parts in ω0\ω1, we obtain, since
u1 = 0 on ∂ω1,∫

ω0\ω1

ν|∇u1|2 +

∫
(∂ω0)\ω1

(−ν∂nu1 + p1 n) · u1 +
1

2

∫
(∂ω0)\ω1

u1 · n |u1|2 = 0. (4.2)

Since u0 = u1 in Ω\ω, the boundary condition satisfied by u0 on ∂ω0 provides that
u1 = u0 = 0 on (∂ω0)\ω1. Hence, equality (4.2) is simply∫

ω0\ω1

ν|∇u1|2 = 0. (4.3)

Therefore, u1 is constant in ω0\ω1. By Theorem 4.2 (with c ≡ 0), u1 is then constant
in Ω\ω1. Since u1 = 0 on ∂ω1, then u1 = 0 in Ω\ω1 which contradicts the boundary
condition u1 = g 6= 0 on ∂Ω. Thus ω0\ω1 = ∅.

Let us now turn to the general case where ω0\ω1 is not necessary Lipschitz. In such a
case, the integration by parts yielding (4.2) is not well justified. Then, to overcome this
difficulty and get (4.3), let us use a density argument. We define the space H̃1(ω0\ω1) as
the space of the functions which belong to H1(ω0\ω1) such that its extension by 0 in Ω
belongs to H1(Ω), i.e.

H̃1(ω0\ω1) :=

w ∈ H1(ω0\ω1), w̃ :=


w in ω0\ω1

0 in ω1

0 in Ω\ω0

belongs to H1(Ω)

 .

Since ∂(ω0\ω1) is continuous, the space D(ω0\ω1) is dense in H̃1(ω0\ω1) according to
[18, Theorem 1.4.2.2, page 24] (we also refer to the general definition of the space H1

0

given in [19, Definition 3.3.43]). We then multiply (4.1) by ϕ ∈ D(ω0\ω1) and, using an
integration by parts, we get∫

ω0\ω1

(ν∇u1 :∇ϕ− p1 divϕ) +
1

2
bω0\ω1

(u1,u1,ϕ)− 1

2
bω0\ω1

(u1,ϕ,u1) = 0, (4.4)

since bω0\ω1
(u1,u1,ϕ) = −bω0\ω1

(u1,ϕ,u1). Then it suffices to show that u1 ω0\ω1

belongs to the space H̃1(ω0\ω1). Indeed, writing Equality (4.4) with ϕ = ϕn, where
(ϕn)n∈N ⊂ D(ω0\ω1) is a sequence such that ϕn → u1 ω0\ω1

in H1(ω0\ω1), we pass to the
limit to get (4.3) and conclude as previously. Hence, let us prove that u1 ω0\ω1

belongs to

H̃1(ω0\ω1). Then, we define ũ1 the extension of u1 by 0 in ω1, i.e.

ũ1 =

{
u1 in Ω\ω1

0 in ω1.

Since u1 = 0 on ∂ω1, ũ1 belongs to H1(Ω). We then consider ũ1 ω0
∈ H1(ω0) and we

extend it by 0 in Ω\ω0. Since ũ1 = u0 = 0 on ∂ω0\ω1 and ũ1 = 0 on ∂ω0 ∩ ω1 by
construction, this extension, noted again ũ1, i.e.

ũ1 =


u1 in ω0\ω1

0 in ω1

0 in Ω\ω0,

belongs to H1(Ω). Hence ũ1 ω0\ω1
= u1 ω0\ω1

belongs to H̃1(ω0\ω1) and we conlude.
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Case where ω 6= ω0 ∪ ω1 (as in Figure 1 for example). Let us now emphasize the
differences and the difficulties of the proof in the general case where ω is not necessary
equal to ω0 ∪ ω1. The idea is to replace ω0 by ω\(ω1\ω0). Indeed, we can not work with
ω0 since we have no information on u1 on ∂ω0\∂ω: we have only proved that u1 = u0

in Ω\ω.
In the case where ω\ω1 is Lipschitz, we proceed in exactly the same way as in the

previous Lipschitz case noticing that ω0\ω1 is then replaced by ω\ω1.
In the general case where ω\ω1 is not necessary Lipschitz, we can not prove that u1 ω\ω1

belongs to H̃1(ω\ω1) in the same manner than above. Indeed, after having extended u1

by 0 in ω1, we can not claim that the extension of ũ1 ω\(ω1\ω0)
by 0 in Ω belongs to H1(Ω).

The idea is then to enlarge the domain ω\ω1 inside ω1 by a smooth (at least Lipschitz)
domain ω̃0 (see Figure 2). We then make the same proof than in the first case using a

ω1

ω0ω̃0

Figure 2: The set ω̃0

density argument replacing ω0 by ω̃0.
In conclusion, we have proved that ω0\ω1 = ∅. By symmetry, ω1\ω0 = ∅ and finally

we obtain ω0 = ω1.

5 First order shape analysis and shape derivatives

5.1 Differentiability result of the Navier-Stokes problem

Let θ ∈ U . We set (uθ, pθ) ∈ H1(Ω\ωθ)× L2(Ω\ωθ) solution of
−ν∆uθ + (uθ · ∇)uθ +∇pθ = 0 in Ω\ωθ

divuθ = 0 in Ω\ωθ
uθ = g on ∂Ω
uθ = 0 on ∂ωθ,

(5.1)

with 〈
m2(ν∂nuθ − pθn) , n

〉
O

=
〈
m2 fb , n

〉
O
.

Notice that, since we assumed (3.6), we have, for all θ ∈ U ,

ν > cb(Ω\ωθ)‖uθ‖H1(Ω\ωθ),

where cb(Ω\ωθ) is defined analogously to (3.8) (see Remark 3.2). Hence, using Theorem 2.5,
the pair (uθ, pθ) is unique.

Let G ∈ H1(Ω) satisfying (3.7). Then (wθ := uθ −G, pθ) ∈ H1
0(Ω\ωθ)× L2(Ω\ωθ) is
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such that for all ϕθ ∈ H1
0(Ω\ωθ) and for all ξθ ∈ L2(Ω\ωθ)

∫
Ω\ωθ

ν∇wθ :∇ϕθ + bΩ\ωθ(wθ,wθ,ϕθ) + bΩ\ωθ(wθ,G,ϕθ)

+bΩ\ωθ(G,wθ,ϕθ)−
∫

Ω\ωθ
pθ divϕθ = −

∫
Ω\ωθ

ν∇G :∇ϕθ

−bΩ\ωθ(G,G,ϕθ)∫
Ω\ωθ

ξθ divwθ = 0〈
m2(ν∂nwθ − pθn) , n

〉
O

=
〈
m2fb , n

〉
O

−
〈
ν m2∂nG , n

〉
O
.

(5.2)
Let us define the key objects of our differentiability proof:

vθ := wθ ◦ (I + θ) ∈ H1
0(Ω\ω) and qθ := pθ ◦ (I + θ) ∈ L2(Ω\ω).

To prove that (u, p) is differentiable with respect to the shape, we need the following
three lemmas:

Lemma 5.1 (Characterization of (vθ, qθ)). For θ ∈ U , the pair (vθ, qθ) satisfies for all
ϕ ∈ H1

0(Ω\ω) and all ξ ∈ L2(Ω\ω)

∫
Ω\ω

[(ν∇vθA(θ)) :∇ϕ− qθB(θ) :∇ϕ]

+bJ(θ,vθ,vθ,ϕ) + bΩ\ω(G,vθ,ϕ)

+bΩ\ω(vθ,G,ϕ) = −
∫

Ω\ω
ν∇G :∇ϕ− bΩ\ω(G,G,ϕ)∫

Ω\ω
(∇vθ :B(θ)) ξ = 0〈

m2(ν∂nvθ − qθn) , n
〉
O

=
〈
m2fb , n

〉
O
−
〈
ν m2∂nG , n

〉
O
,

with

Jθ := det (I +∇θ) ∈W1,∞ (Ωδ

)
,

A(θ) := νJθ (I +∇θ)−1(I + t∇θ)−1 ∈W1,∞ (Ωδ,MN,N

)
,

B(θ) := Jθ(I + t∇θ)−1 ∈W1,∞ (Ωδ,MN,N

)
,

bJ(θ,u,v,w) :=

N∑
i,j=1

∫
Ω\ω

ui
[
∇vj ·

(
∂xi
(
(I + θ)−1

)
◦ (I + θ)

)]
wjJθ.

Lemma 5.2 (Differentiability of θ 7→ (vθ, qθ)). The function

θ ∈ U 7→ (vθ, qθ) ∈ X1,2(Ω\ω,Ωδ\ω)×X0,1(Ω\ω,Ωδ\ω)

is differentiable in a neighborhood of 0 (and even C∞).

Remark 5.3. This lemma implies that there exists a constant c > 0 such that

‖uθ ◦ (I + θ)− u‖X1,2(Ω\ω,Ωδ\ω) + ‖pθ ◦ (I + θ)− p‖X0,1(Ω\ω,Ωδ\ω) ≤ c ‖θ‖U .

The following lemma is proved in exactly the same way than the analogous Lemma in
the Stokes case (see [6, Lemma 3.3]):
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Lemma 5.4 (Differentiability of θ 7→ (uθ, pθ)). There exists ũθ, p̃θ some respective ex-
tensions in Ω of uθ ∈ H1(Ω\ω), pθ ∈ L2(Ω\ω) such that the functions

θ ∈ U 7→ ũθ ∈ H1(Ω) and θ ∈ U 7→ p̃θ ∈ L2(Ω)

are differentiable at 0 (and even C1 in a neighborhood of 0).

Proof of Lemma 5.1. The idea is to make the change of variables x = (I + θ)y in the
variational formulation (5.2). This proof is similar to the proof of Lemma 3.1 in [6] and
we refer to this paper for details. We here only focus on the trilinear form bΩ\ωθ(·, ·, ·).

Let ϕ ∈ H1
0(Ω\ω) and let us define ϕθ := ϕ ◦ (I + θ)−1 ∈ H1

0(Ω\ωθ). We have

bΩ\ωθ(wθ,wθ,ϕθ) =
N∑

i,j=1

∫
Ω\ωθ

wiθ
∂wjθ
∂xi

ϕjθ

=

N∑
i,j=1

∫
Ω\ωθ

(
viθ ◦ (I + θ)−1

) [(
∇vjθ ◦ (I + θ)−1

)
· ∂((I + θ)−1)

∂xi

]
(
ϕj ◦ (I + θ)−1

)
=

N∑
i,j=1

∫
Ω\ω

viθ

[
∇vjθ ·

(
∂((I + θ)−1)

∂xi
◦ (I + θ)

)]
ϕjJθ.

We conclude as in [6, Lemma 3.1] using the fact that θ ≡ 0 in Ω\Ωδ and G ≡ 0 in Ωδ.

The following proof use weighted Sobolev spaces in order to take into account of the
local regularity of the solutions in a neighborhood of the objects. This proof establishes
a mathematical framework to study the existence of the shape derivatives in this kind
of problem with an intuitive idea: the regularity of the exterior boundary does not have
importance.

Proof of Lemma 5.2. In this proof, we use the classical implicit functions theorem.
Step 1: notations. We need some additional tools: a fourth domain Ω̃δ which is an open

set with a C∞ boundary such that Ωδ ⊂⊂ Ω̃δ ⊂⊂ Ω and a truncation function Φ ∈ C∞c (Ω̃δ)
such that Φ ≡ 1 in Ωδ. We define the spaces:

E1 :=
{

(v, q) ∈ H1
0(Ω\ω)× L2(Ω\ω) ; (Φv,Φq) ∈ H2(Ω\ω)×H1(Ω\ω)

}
,

E2 :=
{
f ∈ H−1(Ω\ω) ; Φf ∈ L2(Ω\ω)

}
,

E3 :=

{
ψ ∈ L2(Ω\ω); Φψ ∈ H1(Ω\ω),

∫
Ω\ω

ψ = 0

}
.

Note that E1, E2 and E3 are Hilbert spaces with respective norms

‖(v, q)‖2E1
:= ‖v‖2

H1(Ω\ω)
+ ‖q‖2L2(Ω\ω) + ‖Φv‖2

H2(Ω\ω)
+ ‖Φq‖2H1(Ω\ω),

‖f‖2E2
:= ‖f‖2

H−1(Ω\ω)
+ ‖Φf‖2

L2(Ω\ω)
,

‖ψ‖2E3
:= ‖ψ‖2L2(Ω\ω) + ‖Φψ‖2H1(Ω\ω).

Moreover, we have E1 ↪→ X1,2(Ω\ω,Ωδ\ω) × X0,1(Ω\ω,Ωδ\ω), E2 ↪→ X−1,0(Ω\ω,Ωδ\ω)
and E3 ↪→ X0,1(Ω\ω,Ωδ\ω). Using the notations introduced in Lemma 5.1, we also define:
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• F1(θ, (v, q)) ∈ H−1(Ω\ω) by ∀ϕ ∈ H1
0(Ω\ω),

〈F1(θ, (v, q)) , ϕ〉Ω\ω :=

∫
Ω\ω

[(ν∇v A(θ)) :∇ϕ− q B(θ) :∇ϕ] ,

• F2(θ, (v, q)) ∈ H−1(Ω\ω) by ∀ϕ ∈ H1
0(Ω\ω),

〈F2(θ, (v, q)) , ϕ〉Ω\ω := bJ(θ,v,v,ϕ) + bΩ\ω(v,G,ϕ) + bΩ\ω(G,v,ϕ),

• F3 ∈ H−1(Ω\ω) by ∀ϕ ∈ H1
0(Ω\ω),

〈F3 , ϕ〉Ω\ω :=

∫
Ω\ω

ν∇G :∇ϕ+ bΩ\ω(G,G,ϕ),

• F (θ, (v, q)) ∈ H−1(Ω\ω) by ∀ϕ ∈ H1
0(Ω\ω),〈

F (θ, (v, q)) , ϕ
〉

Ω\ω := 〈F1(θ, (v, q)) + F2(θ, (v, q)) + F3 , ϕ〉Ω\ω ,

• F : U ×E1 → E2 × E3 × R by

F (θ, (v, q)) =
(
F (θ, (v, q)) , ∇v :B(θ) ,

〈
m2
(
ν ∂nv − q n− fb + ν∂nG

)
, n
〉
O

)
.

Note that F is well-defined. In particular ∇v :B(θ) belongs to E3 because, using the
change of variables x = (I + θ)−1y, we check that∫

Ω\ω
∇v :B(θ) =

∫
Ω\ωθ

div (v ◦ (I + θ)−1) = 0,

since v ∈ H1
0(Ω\ω) (and then v ◦ (I + θ)−1 ∈ H1

0(Ω\ωθ)).
Step 2: for θ ≡ 0. We have F (0, (v0, q0)) = F (0, (w, p)) = (0, 0, 0).
Step 3: differentiability of F . In the same way as what is done in the Stokes case in [6],

we prove that

(θ, (v, q)) ∈ U ×E1 7→ F (θ, (v, q)) ∈ E2 and (θ, (v, q)) ∈ U ×E1 7→ ∇v :B(θ) ∈ E3

are C∞. Moreover, the function (v, q) ∈ E1 7→
〈
m2
(
ν ∂nv − q n− fb + ν∂nG

)
, n
〉
O
∈ R

is C∞. We then conclude that F is C∞.
Step 4: D(w,p)F (0, (w, p)) is an isomorphism. In order to simplify the notations, we

use w for w0 in the end of this proof. We compute for all (v, q) ∈ E1

D(w,p)F (0, (w, p))(v, q) =
(
− ν∆v + (v · ∇)w + (w · ∇)v +∇q , div v ,〈

m2(ν ∂nv − q n) , n
〉
O

)
.

Let (χ, η, r) ∈ E2 ×E3 ×R. Let us prove there exists a unique pair (v, q) ∈ E1 such that
−ν∆v + (v · ∇)w + (w · ∇)v +∇q = χ in Ω\ω

div v = η in Ω\ω
v = 0 on ∂Ω
v = 0 on ∂ω〈

m2(ν ∂nv − q n) , n
〉
O

= r.

(5.3)
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Note that the compatibility condition
∫

Ω\ω
η = 0 is satisfied because η ∈ E3. Moreover,

since ν > cb(Ω\ω)‖w‖H1(Ω\ω) by assumption (3.10) (see also Remark 3.2), Theorem 2.7
guarantees that there exists a unique solution (v, q) ∈ H1

0(Ω\ω)×L2(Ω\ω) of Problem (5.3)
and the local regularity Theorem 2.8 proves (v, q) belongs to H2(Ωδ\ω)×H1(Ωδ\ω). More
precisely, we obtain

(Φv,Φq) ∈ H2(Ω\ω)×H1(Ω\ω),

by multiplying (5.3) by Φ (see Remark 2.10). Note that assumptions of Theorem 2.7 are
satisfied since w Ωδ\ω = u Ωδ\ω ∈ H2(Ωδ\ω) by the local regularity Theorem 2.6.

Step 5: conclusion. The implicit function theorem applies and we know that there
exists a C∞ function θ ∈ U 7→ (v(θ), q(θ)) ∈ E1 such that F (θ, (v(θ), q(θ))) = (0, 0, 0)
in a neighborhood of 0. Using the uniqueness of the solution of such a problem, we
conclude.

5.2 First order shape derivatives

First order shape derivatives of the state. We aim to make a sensitivity (with
respect to the shape) analysis. The Navier-Stokes problem on Ω\ωt

−ν∆ut + (ut · ∇)ut +∇pt = 0 in Ω\ωt
divut = 0 in Ω\ωt

ut = g on ∂Ω
ut = 0 on ∂ωt,

(5.4)

admits a solution (ut, pt) ∈ H1(Ω\ωt)× L2(Ω\ωt) satisfying the normalization condition∫
O
m2 (ν∂nut − pt n) · n =

∫
O
m2fb · n.

To be more clear, let us remain the definition of the shape derivative in our situation
(see [19] for details).

• If the mapping θ ∈ U 7→ (uθ ◦ (I + θ), pθ ◦ (I + θ)) ∈ H1(Ω\ω)×L2(Ω\ω) is Fréchet
differentiable at 0, we say that θ 7→ (uθ, pθ) possesses a total first variation (or
derivative) at 0. In such a case, this total first derivative at 0 in the direction θ is
denoted by

(
.
uθ,

.
pθ

)
.

• If, for every D ⊂⊂ Ω\ω, the mapping θ ∈ U 7→ (uθ D , pθ D) ∈ H1(D) × L2(D) is
Fréchet differentiable at 0, we say that θ 7→ (uθ, pθ) possesses a local first variation
(or derivative) at 0. In such a case, this local first derivative at 0 in the direction θ
is denoted by (u′θ, p

′
θ) and is well defined in the whole domain Ω\ω:

(
u′θ, p

′
θ

)
=

d

dt
(utθ D , ptθ D) t=0 in each D ⊂⊂ Ω\ω.

We define similarly the higher order shape derivative. In the following, for V ∈ U , we
denote by (u′, p′) the local first variation (u′V , p

′
V ) which is referred as the shape derivative

of the state.

Remark 5.5. Using the same argument than in Remark 3.1, we check that (ν∂nut − ptn) O

belongs to H1/2(O). Thus, these two previous terms have a sense. We use again this
argument to define the following normalization condition.
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Proposition 5.6 (First order shape derivative of the state). Let V ∈ U . The solution
(u, p) of Problem (3.5) is differentiable with respect to the domain ω ∈ Oδ. The shape
derivative (u′, p′) of (u, p) which belongs to H1(Ω\ω)×L2(Ω\ω) is the only solution of the
following boundary values problem

−ν∆u′ + (u′ · ∇)u+ (u · ∇)u′ +∇p′ = 0 in Ω\ω
divu′ = 0 in Ω\ω

u′ = 0 on ∂Ω
u′ = −∂nu (V · n) on ∂ω,

(5.5)

with the normalization condition〈
m2
(
ν∂nu

′ − p′ n
)
, n
〉
O

= 0.

Let (ut, pt) ∈ H1(Ω\ωt) × L2(Ω\ωt) be the solution of the perturbed Navier-Stokes
problem (5.4). Then

∫
Ω\ωt
{ν∇ut :∇ϕt − pt divϕt}+ bΩ\ωt(ut,ut,ϕt) = 0 ∀ϕt ∈ H1(Ω\ωt)∫

Ω\ωt
ξt divut = 0 ∀ξt ∈ L2(Ω\ωt)∫

O
m2(ν∂nut − pt n) · n =

∫
O
m2 fb · n.

(5.6)

Proof of Proposition 5.6. First step: first order shape differentiability. Using the Fréchet
differentiability Lemma 5.4, we obtain the Gâteaux differentiability in the direction V :
there exist ut and pt, respective extensions in Ω of ut and pt such that the functions, defined
on [0, T ), t 7→ ut ∈ H1(Ω) and t 7→ pt ∈ L2(Ω) are differentiable at 0 by composition. We
denote by u′ and p′ their respective derivative at 0.

Second step: derivative of the normalization condition. The function∫
O
m2(ν∂nut − pt n) · n =

∫
O
m2 fb · n

is constant on [0, T ). Thus, its derivative is 0 and we get
∫
O
m2(ν∂nu

′ − p′ n) · n = 0 .

Third step: derivative of the equalities on Ω\ωt. Let ϕ ∈ D(Ω\ω). As Ω\ω is open, we
have, for t small enough, ϕ ∈ D(Ω\ωt). Therefore, using the first line of the variational
formulation (5.6), we have for all t ∈ [0, T )

0 =

∫
Ω\ωt

(ν∇ut :∇ϕ− pt divϕ) + bΩ\ωt(ut,ut,ϕ)

=

∫
Ω\ω

(ν∇ut :∇ϕ− pt divϕ) + bΩ\ω(ut,ut,ϕ).

We differentiate with respect to t at t = 0 the equality

0 =

∫
Ω\ω

(ν∇ut :∇ϕ− pt divϕ) + bΩ\ω(ut,ut,ϕ)

to obtain

0 =

∫
Ω\ω

(
ν∇u′ :∇ϕ− p′ divϕ

)
+ bΩ\ω(u′,u,ϕ) + bΩ\ω(u,u′,ϕ)

=
〈
−ν∆u′ + (u′ · ∇)u+ (u · ∇)u′ +∇p′ , ϕ

〉
D′(Ω\ω),D(Ω\ω)

.
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As it is true for all ϕ ∈ D(Ω\ω), we get

−ν∆u′ + (u′ · ∇)u+ (u · ∇)u′ +∇p′ = 0 in D′(Ω\ω).

Proceeding with the second line of (5.6) as previously, we check that divu′ = 0 in D′(Ω\ω).
Fourth step: derivatives of the boundary values condition. We differentiate with respect

to t the relation ut = g on ∂Ω, at t = 0. We obtain on ∂Ω that u′ = 0.
Let us set vt := ut ◦φ(t). By differentiation with respect to t (see [19, Corollary 5.2.5]),

we obtain u′ = v′ − ∇uV in Ωδ\ω. Since vt = 0 on ∂ω for all t ∈ [0, T ), v′ = 0 on ∂ω
and u′ = −∇uV . Finally, since u = 0 on ∂ω, ∇u = ∂nu ⊗ n, where ⊗ is the tensorial
product, and u′ = −∂nu (V · n).

First order shape derivatives of the functional. By introducing an adjoint problem,
we then characterize the gradient of the least squares functional J defined by (3.4) in the
following proposition.

Proposition 5.7 (First order shape derivative of the functional). For V in U , the least
squares functional J is differentiable at ω in the direction V with

D J(ω) · V = −
∫
∂ω

[(ν∂nw − π n) · ∂nu] (V · n),

where (w, π) ∈ H1(Ω\ω)×L2(Ω\ω) is the solution of the following boundary values problem:
−ν∆w + t∇uw −∇wu+∇π = 0 in Ω\ω

divw = 0 in Ω\ω
w = 2m2(ν∂nu− pn− fb) on ∂Ω
w = 0 on ∂ω,

(5.7)

with the normalization condition〈
m2(ν∂nw − π n) , n

〉
O

= 0.

Remark 5.8. Note that the previous characterization of the gradient is well defined. In-
deed, using a local regularity argument similar to Theorem 2.6, we check (ν∂nu− pn) O be-
longs to H1/2(O). Then the boundary condition 2m2(ν∂nu−pn−fb) belongs to H1/2(∂Ω).
Notice also using the local regularity Theorems 2.6 and 2.8 that ∂nu and ν∂nw−πn belong
to H3/2(∂ω).

Define, for all t ∈ [0, T ),

J(ωt) := j(t) :=

∫
O
m2| (ν∂nut − ptn)− fb|2.

Proof of Proposition 5.7. First step: derivative of j and adjoint problem. By Proposi-
tion 5.6, (u, p) is differentiable with respect to the shape. We denote their respective
derivative by u′ and p′. Differentiating j with respect to t at t = 0, we obtain

j′(0) = 2

∫
O
m2
(
ν∂nu

′ − p′n
)
· ((ν∂nu− pn)− fb) .

Then, we consider the adjoint problem (5.7). According to Theorem 2.7, it admits a
unique solution (w, π) ∈ H1(Ω\ω) × L2(Ω\ω) with

〈
m2(ν∂nw − πn) , n

〉
O

= 0. Indeed,
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the compatibility condition
∫
O
m2(ν∂nu− pn−fb) ·n = 0 concerning the adjoint problem

is true as consequence of our choice of compatibility condition for the state (3.9).
Second step: writing of j′(0) as an integral on ∂ω. We proceed by successive integrations

by parts. We multiply the first equation of the adjoint problem (5.7) by u′ to get:∫
Ω\ω

ν∇w :∇u′ + bΩ\ω(u′,u,w)− bΩ\ω(u,w,u′) = −
〈
−ν∂nw + π n , u′〉

∂(Ω\ω)
, (5.8)

(since divu′ = 0 in Ω\ω). Then, we multiply the first equation of (5.5) by w to obtain∫
Ω\ω

ν∇u′ :∇w + bΩ\ω(u′,u,w) + bΩ\ω(u,u′,w) = −
〈
−ν∂nu′ + p′ n , w

〉
∂(Ω\ω)

, (5.9)

(since divw = 0 in Ω\ω). Therefore, gathering (5.8) and (5.9) and using the bound-
ary conditions of (u′, p′) and (w, π) (see Problems (5.5) and (5.7)) and the fact that
bΩ\ω(u,w,u′) = −bΩ\ω(u,u′,w), we obtain

2

∫
O
m2
(
ν∂nu

′ − p′n
)
· ((ν∂nu− pn)− fb) = −

∫
∂ω

(ν∂nw − π n) · ∂nu (V · n).

Remark 5.9. Note that for ω∗ ∈ Oδ solution of the inverse problem (3.3), the boundary
condition on ∂Ω of the adjoint problem (5.7) is homogeneous and then w = 0 and π = 0.
Hence, we check that for all V ∈ U , D J(ω∗) · V = 0

5.3 Differentiability result for the linearized Navier-Stokes equation

To differentiate the least squares functional, we introduce the adjoint Problem (5.7). By
Theorem 2.7, this problem admits a unique solution (w, π) ∈ H1(Ω\ω) × L2(Ω\ω) with
the normalization condition: 〈

m2(ν∂nw − πn) , n
〉
O

= 0,

since we assume that ν satisfies (3.10). In the same way as we defined Problem (5.1), we
defined the adjoint problem on Ω\ωθ and we denote by (wθ, πθ) its solution such that〈

m2(ν∂nwθ − πθn) , n
〉
O

= 0.

According to [4, Lemma 3.3], we consider H ∈ H1(Ω) such that

H = ν∂nu− pn− fb on ∂Ω, divH = 0 in Ω and H = 0 in Ωδ.

Thus (zθ := wθ −H, πθ) ∈ H1
0(Ω\ωθ)×L2(Ω\ωθ) is such that for all ϕθ ∈ H1

0(Ω\ωθ) and
for all ξθ ∈ L2(Ω\ωθ)

∫
Ω\ωθ

ν∇zθ :∇ϕθ + bΩ\ωθ(ϕθ,uθ, zθ)

−bΩ\ωθ(uθ, zθ,ϕθ)−
∫

Ω\ωθ
πθ divϕθ = −

∫
Ω\ωθ

ν∇H :∇ϕθ − bΩ\ωθ(ϕθ,uθ,H)

+bΩ\ωθ(uθ,H,ϕθ)∫
Ω\ωθ

ξθ div zθ = 0〈
m2(ν∂nzθ − πθn) , n

〉
O

= −
〈
ν m2∂nH , n

〉
O
.

We then proceed in the same way as the proof of the differentiability of the state (u, p) to
prove the following lemma:
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Lemma 5.10 (Differentiability of θ 7→ (wθ, πθ)). There exists w̃θ, π̃θ some respective
extensions of wθ ∈ H1(Ω\ω), πθ ∈ L2(Ω\ω) such that the functions

θ ∈ U 7→ w̃θ ∈ H1(Ω) and θ ∈ U 7→ π̃θ ∈ L2(Ω)

are differentiable at 0. In particular, the solution (w, π) is differentiable with respect to the
domain.

We precise that, defining F in a similar way as in the proof of Lemma 5.2, we here have

D(z0,π)F (0, (z0, π)) (v, q) =
(
− ν∆v + t∇z0 v −∇v z0 +∇q , div v ,〈

m2(ν∂nv − q n) , n
〉
O

)
.

We then use Remark 2.9.

6 Second order shape analysis and shape derivatives

6.1 Differentiability result of the Navier-Stokes problem

In order to study the second order differentiability, we have to assume more regularity of
the object ω and of the perturbation V . Then, we redefine the following tools for the rest
of the paper:

Oδ :=
{
ω ⊂⊂ Ω with a C2,1 boundary such that d(x, ∂Ω) > δ ∀x ∈ ω

and such that Ω\ω is connected
}
, (6.1)

U :={θ ∈W3,∞(RN ); supp(θ) ⊂ Ωδ} and U :=

{
θ ∈ U ; ‖θ‖3,∞<min

(
δ

3
, 1

)}
.(6.2)

Obvious adaptation of the proof of the first order differentiability (see Lemma 5.2) with

E1 :=
{

(v, q) ∈ H1
0(Ω\ω)× L2(Ω\ω); (Φv,Φq) ∈ H3(Ω\ω)×H2(Ω\ω)

}
,

E2 :=
{
f ∈ H−1(Ω\ω); Φf ∈ H1(Ω\ω)

}
,

E3 :=

{
ψ ∈ L2(Ω\ω), Φψ ∈ H2(Ω\ω),

∫
Ω\ω

ψ = 0

}
,

permits to prove the following lemma which is used to check that (u, p) is twice differen-
tiable with respect to the shape:

Lemma 6.1 (Higher order differentiability of θ 7→ (vθ, qθ)). The function

θ ∈ U 7→ (vθ, qθ) ∈ X1,3(Ω\ω,Ωδ\ω)×X0,2(Ω\ω,Ωδ\ω)

is twice differentiable in a neighborhood of 0 (and even C∞).

Remark 6.2. This lemma implies that there exists a constant c > 0 such that

‖uθ ◦ (I + θ)− u‖X1,3(Ω\ω,Ωδ\ω) + ‖pθ ◦ (I + θ)− p‖X0,2(Ω\ω,Ωδ\ω) ≤ c ‖θ‖U .

We then prove the following lemma in exactly the same way than the analogous Lemma
in the Stokes case (see [6, Lemma 3.5]).

Lemma 6.3 (Second order shape differentiability). The solution (u, p) is twice differen-
tiable with respect to the domain.
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6.2 Second order shape derivatives

We recall that we work now with more regularity concerning the object ω and the per-
turbation V . The definitions of Oδ, U and U are now given by (6.1) and (6.2). Let us
consider ω∗ ∈ Oδ solution of the inverse problem (3.3) in order to study the stability of
the optimization problem (3.11) at ω∗.

Proposition 6.4 (Characterization of the shape Hessian at a critical shape). The solutions
(u, p) and (w, π) are respectively twice and once differentiable with respect to the domain.
Moreover, for V ∈ U , we have

D2J(ω∗) · V · V = −
∫
∂ω∗

[
(ν∂nw

′ − π′ n) · ∂nu
]

(V · n) ,

where (w′, π′) ∈ H1(Ω\ω∗)× L2(Ω\ω∗) is the solution of the following problem:
−ν∆w′ + t∇uw′ −∇w′ u+∇π′ = 0 in Ω\ω∗

divw′ = 0 in Ω\ω∗
w′ = 2m2(ν∂nu

′ − p′ n) on ∂Ω
w′ = 0 on ∂ω∗,

(6.3)

with the normalization condition〈
m2(ν∂nw

′ − π′ n) , n
〉
O

= 0.

Remark 6.5. Note that 2m2(ν∂nu
′− p′ n− fb) belongs to H1/2(∂Ω) and D2J(ω∗) ·V ·V

is well defined.

Notice that, thanks to the local regularity results 2.6 and 2.8,

(u, p) ∈ H3(Ωδ\ω∗)×H2(Ωδ\ω∗) and (u′, p′) ∈ H2(Ωδ\ω∗)×H1(Ωδ\ω∗).

Proof of Proposition 6.4. First step: second order shape differentiability. According to
Lemma 6.3, (u, p) is twice differentiable with respect to the domain. We denote by (u′′, p′′)
the second order shape derivatives.

Second step: second derivative of j and derivative of the adjoint problem. Consider
V ∈ U . We differentiate the function j twice with respect to t. At t = 0, it holds

j′′(0) = D2J(ω) · V · V = 2

∫
O
m2
[(
ν∂nu

′′ − p′′n
)
· (ν∂nu− pn− fb) + |ν∂nu′ − p′n|2

]
.

Since ω∗ solves the inverse problem, ν∂nu− pn = fb on O. Therefore

D2J(ω∗) · V · V = 2

∫
O
m2|ν∂nu′ − p′n|2.

We introduce (w, π) ∈ H1(Ω\ω)× L2(Ω\ω) with
〈
m2(ν∂nw − πn) , n

〉
O

= 0 the solution
of the adjoint system (5.7). According to Lemma 5.10, (w, π) is differentiable with respect
to the domain and we denote (w′, π′) its shape derivative. In the same manner that we
characterized u′ and p′ (see Proposition 5.6), we characterize w′ and π′ as a solution of

−ν∆w′ + t∇uw′ −∇w′ u+∇π′ = ∇wu′ − t∇u′w in Ω\ω
divw′ = 0 in Ω\ω

w′ = 2m2 (ν∂nu
′ − p′ n) on ∂Ω

w′ = −∂nw (V · n) on ∂ω,
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with
〈
m2(ν∂nw

′ − π′n) , n
〉
O

= 0. In particular, for ω = ω∗, ν∂nu−pn = fb on O. There-
fore, according to the system (5.7) solved by (w, π), the uniqueness of the solution of the
linearized Navier-Stokes problem enforces that w = 0 in Ω\ω∗. Therefore ∂nw (V · n) = 0
on ∂ω∗ and we obtain the system (6.3).

Third step: writing of j′′(0) as an integral on ∂ω. We multiply the first equation of
Problem (6.3) by u′ to get∫

Ω\ω∗
ν∇w′ :∇u′ + bΩ\ω∗(u

′,u,w′)− bΩ\ω∗(u,w
′,u′) = −

〈
−ν∂nw′ + π′ n , u′〉

∂(Ω\ω∗) .

(6.4)
We multiply the first equation of Problem (5.5) by w′ to get∫

Ω\ω∗
ν∇u′ :∇w′ + bΩ\ω∗(u

′,u,w′) + bΩ\ω∗(u,u
′,w′) = −

〈
−ν∂nu′ + p′ n , w′〉

∂(Ω\ω∗) .

(6.5)
Therefore, gathering (6.4) and (6.5), and using bΩ\ω∗(u,w

′,u′) = −bΩ\ω∗(u,u′,w), we
obtain

2

∫
O
m2|ν∂nu′ − p′n|2 = −

∫
∂ω∗

(ν∂nw
′ − π′ n) · ∂nu (V · n) .

7 Justification of the instability

We recall that we work now with more regularity concerning the object ω and the per-
turbation V . The definitions of Oδ, U and U are now given by (6.1) and (6.2). Let us
consider ω∗ ∈ Oδ solution of the inverse problem (3.3) in order to study the stability of
the optimization problem (3.11) at ω∗.

Proposition 7.1 (Compactness at a critical point). The Riesz operator corresponding to
D2J(ω∗) defined from H1/2(∂ω∗) to H−1/2(∂ω∗) is compact.

This statement points out the lack of stability of the optimization problem (3.11). This
compactness result means, roughly speaking, that, in a neighborhood of ω∗ (i.e. for t
small), J behaves as its second order approximation and one cannot expect an estimate of
the kind C t ≤

√
J(ωt) with a constant C uniform in V . Indeed, let us take the example

of a starshaped domain ω in dimension two. Assume that ∂ω is parametrized by

∂ω =
{( g0

g1

)
+

(
g2 +

∞∑
k=1

(g2k+1cos(k θ) + g2k+2sin(k θ))

)(
cos(θ)
sin(θ)

)

=

∞∑
k=0

gkV k(θ); θ ∈ (0, 2π)
}
,

where gk ∈ R. Then, since our identifiability result proves that the domain to be recovered
is a local strict minimum of the least squares functional, we have, for all n ∈ N, an estimate
of the kind

∀V ∈ Span(V k)0≤k≤2n+2, D2J(ω∗) · (V ,V ) ≥ Cn |V |2,
where Cn is a positive constant. But this constant Cn tends to 0 when n tends to +∞.

Hence, this proposition emphasizes that the gradient has not a uniform sensitivity
with respect to the deformation directions: J is degenerate for the high frequencies. This
explains the numerical difficulties encountered to solve numerically this problem. For more
details, we refer to [6, §2.3].
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Justifying the ill-posedness of the problem. The compactness of the Riesz operator
corresponding to the shape Hessian at possible solutions of the inverse problem is here
proven using a local regularity argument as it is done in [6]. We do not use the hydrody-
namical potential layers as it was done in [1] for the Laplacian case. This should provide
an alternative proof.

We recall we assume that ω∗ ∈ Oδ is a solution of the inverse problem (3.3) with a C2,1

boundary and that V ∈ W3,∞(RN ). To prove Proposition 7.1, we first decompose the
shape Hessian at ω∗: for V ∈ U ,

D2J(ω∗) · V · V = 〈M2 ◦M1(V ) , Tu,p(V )〉∂ω∗ .

Here, Tu,p : H1/2(∂ω∗)→ H1/2(∂ω∗) is defined by

Tu,p(V ) := −∂nu (V · n) ,

andM1 : H1/2(∂ω∗)→ H1/2(∂Ω) byM1(V ) := 2m2(ν∂nu
′−p′n), with (u′, p′) the solution

of (5.5). Finally, M2 : H1/2(∂Ω) → H−1/2(∂ω∗) satisfies M2(ϕ) := ν∂nψ − χn, where
(ψ, χ) is the solution of the following problem

−ν∆ψ + t∇uψ −∇ψu+∇χ = 0 in Ω\ω∗
divψ = 0 in Ω\ω∗

ψ = ϕ on ∂Ω
ψ = 0 on ∂ω∗.

(7.1)

We study each operator: Lemma 7.2 states that Tu,p and M1 are linear continuous and
Lemma 7.3 claims that M2 is compact. Hence, compactness is obtained by composition of
linear continuous operator with a compact one.

Lemma 7.2. The operators Tu,p and M1 are linear continuous.

Proof. Since u does not depend on V and using the continuity of the gradient operator ∇,
the operator Tu,p is linear continuous as multiplier by a smooth function (see [22]).

Let us consider V ∈ H1/2(∂ω∗). Using a local regularity result similar to Theorem 2.8,
we prove that (v, q) belongs to H2×H1 in a neighborhood of O (since Õ is C1,1) and, since
supp(m) = O, the operator

Φ : B ∈ H1/2(∂ω∗) 7→ 2m2(ν∂nv − qn) ∈ H1/2(∂Ω),

where (v, q) is the solution of the problem
−ν∆v + (v · ∇)u+ (u · ∇)v +∇q = 0 in Ω\ω∗

div v = 0 in Ω\ω∗
v = 0 on ∂Ω
v = B on ∂ω∗,

with
∫
O
m2(ν∂nv−qn) ·n = 0, is linear continuous. Finally, by composition,M1 = Φ◦Tu,p

is linear continuous from H1/2(∂ω∗) into H1/2(∂Ω).

Lemma 7.3. The operator M2 : H1/2(∂Ω)→ H−1/2(∂ω∗) is compact.
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Proof. According to a local regularity result similar to Theorem 2.8, the operator

ϕ1 : ϕ ∈ H1/2(∂Ω) 7→ (ψ, χ) ∈ H3(Ωδ\ω∗)×H2(Ωδ\ω∗),

where (ψ, χ) is the solution of Problem (7.1), is linear continuous. Moreover,

ϕ2 : (ψ, χ) ∈ H3(Ωδ\ω∗)×H2(Ωδ\ω∗) 7→ ν∂nψ − χn ∈ H3/2(∂ω∗)

is linear continuous and the embedding of H3/2(∂ω∗) in H−1/2(∂ω∗), denoted by ϕ3, is
compact. Thus, we get, by composition, that the operatorM2 = ϕ3◦ϕ2◦ϕ1 is compact.

Remark 7.4. We see in this proof that if ν∂nψ − χn ∈ Hk+1/2(∂ω∗), for a k ∈ N∗,
we use the compactness of the embedding of Hk+1/2(∂ω∗) in H−1/2(∂ω∗). Thus, the
more ω∗ is smooth (with a Ck+1,1 boundary), the more ν∂nψ − χn is regular (it belongs
to Hk+1/2(∂ω∗)), the more the functional J is degenerate (see the comment after the state-
ment of Proposition 7.1) and the more the object is difficult to detect. For example, a circle
(for N = 2) is very difficult to detect, if we do not know that we are looking for a circle.
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